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Abstract. The η′g∗g(∗) effective vertex function (EVF) is calculated in the QCD hard-scattering approach,
taking into account the η′-meson mass. We work in the approximation in which only one non-leading Gegen-
bauer moment in both the quark-antiquark and gluonic light-cone distribution amplitude for the η′-meson is
kept. The EVF with one off-shell gluon is shown to have the form Fη′g∗g(q2

1 , 0, m2
η′) = m2

η′H(q2
1)/(q2

1−m2
η′),

valid for |q2
1 | > m2

η′ . An interpolating formulae for the EVF in the space-like region of the virtuality q2
1 ,

which satisfies the QCD-anomaly normalization for on-shell gluons and the perturbative-QCD result for
the gluon virtuality |q2

1 | � 2 GeV2, is also presented.

1 Introduction

The η′g∗g(∗) effective vertex function (EVF) [or the η′ –
gluon transition form factor], Fη′g∗g∗(q21 , q

2
2 ,m

2
η′), enters

in a number of decays such as J/ψ → η′γ, Υ → η′X,
Υ → η′γ, B → (π, ρ,K,K∗) η′, B → η′Xs, and hadro-
nic production processes, such as N +N(N̄) → η′X, and
hence is of great phenomenological importance.

At low gluon virtualities, |q21 | ∼ |q22 | � m2
η′ , the

EVF is determined by the QCD anomaly while in inclu-
sive decays of B- or Υ -mesons, the gluon virtualities can
be large enough (|q2i | � m2

η′) to allow the perturbative-
QCD consideration for the EVF. Indeed, the hard part
of the η′-meson energy spectrum in the inclusive decay
Υ (1S) → ggg∗(g∗ → η′g) → η′X is well reproduced when
the perturbative-QCD form for the η′ – gluon transition
form factor is used in the analysis [1,2,3].

In the perturbative-QCD framework, the η′g∗g(∗) EVF
can be calculated as a convolution of a hard-scattering
kernel with the η′-meson wave-function. For the energetic
η′-meson, transverse degrees of freedom of the meson con-
stituents can be neglected and its wave-function is well
described in terms of the quark-antiquark and gluonic
light-cone distribution amplitudes (LCDAs). As the gluo-
nic content of the η′-meson is very important in many
process, its effect can not be ignored. In this approach,
the η′g∗g(∗) EVF has been studied by several groups [4,
5,6,7]. As the η′-meson mass is relatively large, it is not
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a good approximation to neglect it in certain kinematical
regions, in particular, when the gluon virtuality is time-
like. A consistent treatment of the η′-meson mass effect in
the EVF was undertaken by us recently [8] and the results
obtained are presented in this report.

2 Light-cone η′-meson wave-function

The η′-meson contains both the quark-antiquark and gluo-
nic components and, for energetic η′-meson, its wave-
function can be presented in the form of the twist decom-
position and described by the LCDAs. Here, we restrict
ourselves to the leading-twist (twist-two) approximation
only. An underlying theoretical basis for such a description
can be found in [6,8]. The twist-two LCDAs are usually
used in the following approximate forms:

φ
(q)
η′ (u,Q2) = 6uū

[
1 + 6(1 − 5uū)A2(Q2)

]
,

φ
(g)
η′ (u,Q2) = 5u2ū2 (u− ū)B2(Q2), (1)

where only the second Gegenbauer moments A2(Q2) and
B2(Q2) are kept. As the quark-antiquark and gluonic com-
ponents are mixed under the scale evolution, the Gegen-
bauer moments introduced above are superpositions of the
non-perturbative parameters B(q)

2 (µ2
0) and B

(g)
2 (µ2

0) [the
Gegenbauer coefficients]:

A2(Q2) = B
(q)
2

[
αs(µ2

0)
αs(Q2)

]γ2
+

+ ρ
(g)
2 B

(g)
2

[
αs(µ2

0)
αs(Q2)

]γ2
−
, (2)

B2(Q2) = ρ
(q)
2 B

(q)
2

[
αs(µ2

0)
αs(Q2)

]γ2
+

+B
(g)
2

[
αs(µ2

0)
αs(Q2)

]γ2
−
. (3)
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Fig. 1. The η′g∗g EVF for the time-like (left
frame) and space-like (right frame) gluon virtua-
lity q2

1 when the second gluon is on the mass shell
(q2

2 = 0). The solid and dashed curves are plot-
ted for the EVF with and without taking into
account the η′-meson mass, respectively. The la-
bels C, LL, and UR correspond to the central,
lower-left and upper-right points of the combi-
ned best fit of the Gegenbauer coefficients pre-
sented in Fig. 5 of [3] and given in (4)

The Gegenbauer coefficients at the initial scale µ0 of the
LCDA evolution can be estimated by non-perturbative
methods or extracted from the experimental data sensitive
to the internal structure of the η′-meson. In particular, a
fit to the CLEO and L3 data on the η′ −γ transition form
factor for Q2 > 2 GeV2 was recently undertaken in [6].
The other process which allows to get an independent
information on the Gegenbauer coefficients in the η′g∗g
EVF is the inclusive Υ (1S) → η′X decay. The η′-meson
energy spectrum in this decay was recently measured by
the CLEO collaboration [1] and the data on the hard part
of the spectrum are in agreement with the perturbative-
QCD analysis [2,3]. Current experiments and the theore-
tical analysis undertaken in these processes individually
leave an order of magnitude uncertainties on the Gegen-
bauer coefficients but the combined fit of the data allows
to reduce substantially these uncertainties and results in
the following values [3]:

B
(q)
2 (2 GeV2) = −0.008 ± 0.054, (4)

B
(g)
2 (2 GeV2) = 4.6 ± 2.5.

3 The η′g∗g(∗) effective vertex function

In the momentum space, the η′g∗g∗ EVF can be extracted
from the invariant matrix element of the process η′(p) →
g∗(q1) g∗(q2):

M ≡ Fη′g∗g∗(q21 , q
2
2 ,m

2
η′) δAB ε

µνρσ εA∗
1µ ε

B∗
2ν q1ρq2σ. (5)

This amplitude gets contributions from both the quark-
antiquark and gluonic components of the η′-meson and
the corresponding individual amplitudes M(q) and M(g)

can be calculated as follows:

M(q) = ifη′

1∫

0

duφ
(q)
η′ (u,Q2) P(q)

jβb;iαa δ
ab

[
T

(q)
H

]αβ

ij
, (6)

M(g) =
ifη′

2

1∫

0

du
φ

(g)
η′ (u,Q2)
uū

P(g)
σD;ρC

[
T

(g)
H

]ρσ

CD
. (7)

Here,
[
T

(q)
H

]αβ

ij
(
[
T

(g)
H

]ρσ

CD
) is the quark (gluonic) hard-

scattering kernel calculated in the perturbative QCD and

P(q)
jβb;iαa (P(g)

µA;νB) is the η′-meson projection operator onto
the quark-antiquark (two-gluon) state [3].

The results for the quark-antiquark and gluonic parts
of the η′g∗g∗ EVF can be written in the form:

F
(q)
η′g∗g∗(q2, ω, η) =

4παs(Q2)
m2

η′ λ

3fη′
√
Nf

Nc
(8)

×
{
G

(q)
0 (ω, η) + 6A2(Q2)G(q)

2 (ω, η)
}
,

F
(g)
η′g∗g∗(q2, ω, η) = −4παs(Q2)

m2
η′λ

5fη′

2
√
Nf

B2(Q2) G(g)
2 (ω, η),

(9)
where the following kinematical quantities: q2 = q21 + q22 ,
ω = (q21 − q22)/q2, η = m2

η′/q2, and the parameter λ =√
1 − η(2 − η)/ω2 are introduced. The explicit forms of

the functions G(q)
0 (ω, η), G(q)

2 (ω, η), and G(g)
2 (ω, η) can be

found in [8]. When the η′-meson mass is neglected (mη′ =
0), the usual 1/q2 behavior of the EVF is reproduced [8].
Both contributions contain the factor 1/λ which is equal
to m2

η′/(q21 − m2
η′) for the case when the second gluon

in the final state is on the mass shell (q22 = 0). Thus, the
phenomenological form for the η′−g transition form factor
suggested by Kagan and Petrov [9]:

F (q21) ≡ Fη′g∗g(q21 , 0,m
2
η′) =

m2
η′ H(q21)
q21 −m2

η′
, (10)

is naturally reproduced in the LCDA approach when the
η′-meson mass is taken into account. As a disadvantage of
this approach, one encounters a singularity at q21 = m2

η′
which, however, can be removed by an inclusion of trans-
verse degrees of freedom for the partons in the η′-meson.
In contrast to [9] where it was suggested to approxi-
mate the function H(q21) in (10) by a constant value,
H0 = 1.7 GeV−1, the explicit form of this function was
calculated by us in the framework of the QCD hard-
scattering approach [8]. It can be presented the following
approximate form:

Has(q21) =
4παs(Q2)
m2

η′

√
3fη′

[
1 +A2(Q2) − 5

36
B2(Q2)

]
,

(11)
in the region of the applicability of the perturbative QCD
which was taken as q21 < −1 GeV2 and q21 > 2 GeV2.
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Fig. 2. The η′ − g transition form factor in the
perturbative-QCD approach and using the in-
terpolating formulae for the space-like region of
the gluon virtuality q2

1 . The left frame shows the
functions Fas(q2

1) (dashed curves) and F̃ (q2
1) (so-

lid curves). The right frame shows the functions
Has(q2

1) (dashed curves) and H̃(q2
1) (solid cur-

ves) which are connected with Fas(q2
1) and F̃ (q2

1)
by (10). The labels on the curves are the same
as in Fig. 1

The dependence on q21 in the r.h.s. of (11) is coming only
through the combination Q2 = |q21 | +m2

η′ .
The dependence of the EVF on the gluon virtuality q21

in the time- and space-like regions for the combined best-
fit values (4) of the Gegenbauer coefficients is presented
in Fig. 1. The inclusion of the η′-meson mass reduces the
parametric dependence on the Gegenbauer coefficients of
the η′g∗g EVF in the time-like region of the gluon virtua-
lity. This is generally not the case for the space-like gluon
virtuality, in particular for the low values, as the η′-meson
mass effects are not as pronounced.

A formal limit of the function (11) for on-shell gluons
(q21 = 0) exists with a strong dependence on the Gegen-
bauer coefficients as shown in Fig. 2. It is well known that
the value of the η′g∗g∗ EVF in this limit is determined by
the anomaly:

FA
η′gg = −4παs(m2

η′)
1

2π2fη′
= −HA, (12)

which is substantially different from the limiting values of
the perturbative-QCD motivated EVF (see Fig. 2). Thus,
the behavior of Has(q21) should be modified accordingly.
In [8], we suggested the following interpolating formulae:

H̃(q21) = Has(q21) + [HA −Has(0)] exp
[
Cs q

2
1/m

2
η′

]
, (13)

to improve the EVF behavior at the low space-like virtua-
lity. In the numerical analysis, Cs = 2 was adopted for
the free parameter introduced, which allows a smooth in-
terpolation between the anomaly normalization at q21 = 0
and the perturbative-QCD result for the large-|q21 | region.
As seen from Fig. 2, this interpolation strongly decrease
the dispersion in the region of the low space-like gluon
virtuality.

4 Summary

The η′g∗g(∗) EVF is calculated in the perturbative-QCD
approach using the LCDAs for the η′-meson wave-function

with the inclusion of the η′-meson mass. If one of the
gluons is on the mass shell, the pole-like behavior of the
η′ – gluon transition form factor emerges in this approach
for both the quark-antiquark and gluonic parts of the
EVF. The corresponding function H(q21) is perturbatively
calculated. The η′-meson mass effects are analyzed nume-
rically with the result that they are important for lower
values of the gluon virtuality, in particular in the time-like
region. An interpolating formulae connecting the QCD-
anomaly value and the perturbative-QCD behavior of the
η′ – gluon transition form factor is presented for the space-
like region of the gluon virtuality, taking into account the
η′-meson mass, which modifies the EVF significantly in
the region |q21 | < 1 GeV2 and reduces also the theoretical
dispersion in this region considerably.
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